Да сгинет смерть! Победа над старением и продление человеческой жизни. Страница 32

Сейчас мы весьма далеки от всех этих возможностей, более того, быть может, нам вообще не удастся их осуществить. Пока еще ни одно животное не было полностью заморожено и воскрешено. И все же Прехода не теряет надежды, что со временем появятся средства, "позволяющие сохранять человека бесконечно долго в состоянии временного прекращения жизненных процессов при крайне низких температурах".

Вместе с тем такие экстренные меры, как замораживание людей с целью продления их жизни, могут и не понадобиться, если успехи биологии старения оправдают те надежды, которые на них возлагают. На некоторых наиболее успешных исследованиях процесса старения мы остановимся в следующей главе.

7. Биология старения

Когда-нибудь, как полагает Артур Гэлстон, биолог из Йельского университета, в распоряжении человека вполне может появиться "омолаживающий коктейль", который замедлит или обратит вспять процесс старения. Но, добавляет он, так как старение вызывает разнообразные изменения в клетках, едва ли "один какой-нибудь эликсир сможет подавить все дегенеративные изменения". По мнению Гэлстона, "омолаживающий коктейль", этот "источник вечной юности", будет сложным, многокомпонентным напитком, содержащим комбинации лекарств, гормонов и ферментов. Чтобы понять, почему понадобится именно такая сложная смесь, нам придется пройти по крайней мере по пяти разным дорогам теории старения. А чтобы в них не заплутаться, нужно понять, как клетки живут, стареют и гибнут, ибо наша старость начинается именно в клетках нашего организма.

Жизнь клеток

Клетка, мельчайшая составная единица организма, обладающая всеми свойствами живого, воспроизводится путем деления, в результате которого из одной клетки возникают две. Все клетки происходят от уже существующих. Так, одна клетка зародыша цыпленка делится на две, в свою очередь эти две делятся, давая четыре, и так далее, пока не возникнут те миллиарды клеток, из которых состоит только что вылупившийся цыпленок. Та же картина наблюдается у человека: триллионы клеток взрослого человека происходят из одной — оплодотворенной яйцеклетки. Каждая клетка делится посередине на две равные части; таким образом, две новые клетки, поначалу меньшие "материнской", в равных долях получают все многообразные химические компоненты, необходимые для процесса обмена веществ (т. е. химических реакций, снабжающих клетку энергией). Обе клетки окружены прочной оболочкой, регулирующей поступление питательных веществ и выведение продуктов распада.

В состав клеток входят несколько основных типов химических веществ, называемых органическими молекулами ("органические" — относящиеся к жизни): углеводы, жиры, белки и нуклеиновые кислоты. Все эти крупные, сложные молекулы играют особую роль в жизни клетки. Углеводы дают энергию, необходимую для функционирования клеток. Жиры служат источником, из которого черпается энергия в клетках, — своего рода резервный запас на тот случай, если возникнет дефицит сахара. Жиры также входят в состав клеточных мембран. Белки, которые также входят в состав клеточной мембраны (и которые вместе с жирами регулируют проникновение химических веществ в клетку и из нее), находятся и внутри клетки, в так называемой цитоплазме, содержащей растворенные в воде химические вещества. Некоторые из этих внутриклеточных белков, называемых ферментами, ускоряют ход многих химических реакций обмена веществ, которые в противном случае проходили бы недостаточно быстро для поддержания жизни клетки. Нуклеиновые кислоты в основном находятся внутри особой клеточной структуры, называемой ядром. Ядро представляет собой сферическую структуру, расположенную примерно в центре каждой клетки. Нуклеиновые кислоты бывают двух основных типов: дезоксирибонуклеиновая кислота, или ДНК, и рибонуклеиновая кислота, или РНК. Обе представляют собой длинные, сложные цепочки атомов.

Да сгинет смерть! Победа над старением и продление человеческой жизни - _09.jpg

Рис. 6. Типичная животная клетка

В 1940 г. группа бактериологов Рокфеллеровского института в Нью-Йорке, возглавляемая Освальдом Эвери, установила, что ДНК-молекула, несущая информацию, которая кодирует протекание всех химических реакций и структуру клетки. Исследователям удалось доказать, что ДНК в известной мере определяет жизнь, рост и размножение клетки.

Открытие ключевой роли ДНК в метаболизме клеток дало толчок к своеобразным международным состязаниям ученых по расшифровке структуры ДНК и способов, которые позволяют этой структуре управлять всеми химическими процессами в клетке. Эти состязания выиграли в 1953 г. два молодых специалиста по молекулярной биологии в Кембриджском университете — Фрэнсис Крик и Джеймс Уотсон. Они показали, что ДНК управляет обменом веществ, строением и делением клетки посредством РНК, которая действует в качестве матричной молекулы, направляющей синтез белков. В свою очередь, белки управляют обменом веществ в клетке, формируют ее основные структурные элементы и участвуют в регуляции деления клетки. При делении клетки две "дочерние" клетки, как их называют генетики, не только получают полный набор белков, жиров и углеводов, но и жизненно важный компонент — ДНК, которая будет управлять их метаболизмом и ростом.

Биологам конца минувшего столетия клетки казались структурами чудесными и таинственными. Исследуя одноклеточные организмы, такие, как амеба, они обнаружили, что клетки практически бессмертны до тех пор, пока они растут, делятся и избегают нападения микроскопических хищников. В 20-30-х годах текущего века эксперименты таких биологов, как Алексис Каррель, как бы подтверждали, что отдельные клетки и в самом деле бессмертны и что старение и смерть — это свойства лишь крупных комбинаций клеток, как, например, в организме человека. Каррель сумел выделить клетки из сложного организма цыплят, и эти клетки, казалось бы, продолжали поддерживать обмен веществ и делиться годы спустя после смерти того цыпленка, у которого они были взяты. Но, как выяснилось, Каррель ошибался.

Эксперименты Хейфлика: генетические пределы жизни

В 1961 г. д-р Леонард Хейфлик, в ту пору работавший в Станфордском университете, в ходе экспериментов по изучению рака обнаружил, что клетки человека, растущие в культуре (химической питательной среде, обеспечивающей их энергией и веществами, необходимыми для жизни), делятся только ограниченное число раз за тот период, пока их потомство стареет и умирает. Число делений, которое могли претерпеть выделенные из человеческого эмбриона клетки, оказалось равным примерно 50. Клетки, полученные от более старых людей, претерпевали еще меньше делений, а затем гибли. Например, клетки, взятые у взрослого человека, способны делиться примерно раз двадцать.

Хейфлик и другие исследователи культивировали также клетки животных и доказали, что число делений зависит от того, сколько в норме живет это животное. Так, для клеток норки, продолжительность жизни которой составляет около 10 лет, число делений меньше, чем для клеток человека, а для клеток мыши, живущей примерно три года, делений еще меньше, чем для клеток норки. Хейфлик пришел к выводу, что смерть всех клеток, принадлежащих животным или человеку, отражает процесс старения на уровне отдельной клетки, а стареют клетки оттого, что существует генетический предел продолжительности их жизни.

По мнению Хейфлика, этот генетический предел программируется информацией, заключенной в длинных, сложных цепях атомов ДНК в ядре каждой клетки. Следовательно, старение оказывается структурно обоснованной, "встроенной" особенностью клеточной структуры; все нормальные клетки заранее обречены на необратимое увядание.




Перейти на страницу:
Изменить размер шрифта: