Большая Советская Энциклопедия (РИ). Страница 38
Лит.: Мазель Л., Функциональная школа, в книга: Рыжкин И., Мазель Л., Очерки по истории теоретического музыкознания, в. 1, М., 1934; История европейского искусствознания, т. 4, книги 1—2 — Вторая половина XIX в. — нач. XX в., М., 1969.
Римана геометрия
Ри'мана геоме'трия, эллиптическая геометрия, одна из неевклидовых геометрий , т. е. геометрическая теория, основанная на аксиомах, требования которых (в значительной части) отличны от требований аксиом евклидовой геометрии . Основными объектами, или элементами, трёхмерной Р. г. являются точки, прямые и плоскости; основные понятия Р. г. суть понятия принадлежности (точки прямой, точки плоскости), порядка (например, порядка точек на прямой или порядка прямых, проходящих через данную точку в данной плоскости) и конгруэнтности (фигур). Требования аксиом Р. г., касающиеся принадлежности и порядка, полностью совпадают с требованиями аксиом проективной геометрии . Соответственно, в Р. г. имеют место, например, следующие предложения: через каждые две точки проходит одна прямая, каждые две плоскости пересекаются по одной прямой, каждые две прямые, лежащие в одной плоскости, пересекаются (в одной точке), точки на прямой расположены в циклическом порядке (как и прямые, лежащие в одной плоскости и проходящие через одну точку). Требования аксиом Р. г., касающиеся конгруэнтности, сходны с требованиями соответствующих аксиом геометрии: во всяком случае они обеспечивают движения фигур по плоскости и в пространстве Римана столь же свободные, как на плоскости и в пространстве Евклида. Метрические свойства плоскости Римана «в малом» совпадают с метрическими свойствами обыкновенной сферы. Точнее: для любой точки плоскости Римана существует содержащая эту точку часть плоскости, изометричная некоторой части сферы; радиус R этой сферы — один и тот же для всех плоскостей данного пространства Римана. Число К = 1/R2 называется кривизной пространства Римана (чем меньше К, тем ближе свойства фигур этого пространства к евклидовым). Свойства плоскости Римана «в целом» отличаются от свойств целой сферы; так, например, на плоскости Римана две прямые пересекаются в одной точке, а на сфере два больших круга, которые играют роль прямых в сферической геометрии, пересекаются в двух точках; прямая, лежащая на плоскости, не разделяет эту плоскость (т. е., если прямая а лежит в плоскости a, то любые две точки плоскости a, не лежащие на прямой а, возможно соединить отрезком, не пересекая прямой а).
По-видимому, первое сообщение о Р. г. сделано Б. Риманом в его лекции «О гипотезах, лежащих в основании геометрии» (1854, опубликовано в 1867), где Р. г. рассматривалась как частный случай римановой геометрии — теории римановых пространств в широком смысле. Р. г. относится к теории пространств постоянной положительной кривизны.
Лит. см. при статье Неевклидовы геометрии .
Н. В. Ефимов.
Римана дзета-функция
Ри'мана дзе'та-фу'нкция (математическая), см. Дзета-функция .
Римана интеграл
Ри'мана интегра'л, обычный определённый интеграл . Само определение Р. и. по существу было дано О. Коши (1823), который, однако, применял его к непрерывным функциям. Б. Риман впервые указал (1853, опубликовано в 1867) необходимое и достаточное условие существования определённого интеграла, которое в современных терминах может быть выражено так: для существования определённого интеграла функции на некотором интервале необходимо и достаточно, чтобы: 1) интервал был конечным; 2) функция была на нём ограниченной и 3) множество точек разрыва функции на этом интервале имело лебеговскую меру нуль (см. Мера множества ).
Римана сфера
Ри'мана сфе'ра, одно из возможных геометрических изображений совокупности комплексных чисел , введённое Б. Риманом . Комплексное число
z = х + iy = r (cos j + i sin j) = reij
можно изображать точками на плоскости (комплексной числовой плоскости) с декартовыми координатами х, у или полярными r, j. Для построения Р. с. проводится сфера, касающаяся комплексной числовой плоскости в начале координат; точки комплексной числовой плоскости отображаются на поверхность сферы с помощью стереографической проекции . В этом случае каждое комплексное число изображается соответствующей точкой сферы; последняя и называется сферой Римана. Число О изобразится при этом южным полюсом Р. с.; числа с одинаковым аргументом j = const (лучи комплексной числовой плоскости) изобразятся меридианами, а числа с одинаковым модулем r = const (окружности комплексной числовой плоскости) — параллелями Р. с. Северному полюсу Р. с. не соответствует никакая точка комплексной числовой плоскости. В целях сохранения взаимной однозначности соответствия между точками комплексной числовой плоскости и Р. с. на плоскости вводят «бесконечно удалённую точку», которую считают соответствующей северному полюсу и обозначают z = ¥ Т. о., на комплексной числовой плоскости имеется одна бесконечно удалённая точка, в отличие от проективной плоскости.
Если в пространстве ввести прямоугольную систему координат x, h, z так, что оси x и h совпадают, соответственно, с осями х и у, то точке x + iy комплексной числовой плоскости соответствует точка



Р. с. (уравнение которой

Риманова геометрия
Ри'манова геоме'трия, многомерное обобщение геометрии на поверхности, представляющее собой теорию римановых пространств, т. е. таких пространств, где в малых областях приближённо имеет место евклидова геометрия (с точностью до малых высшего порядка сравнительно с размерами области). Р. г. получила своё название по имени Б. Римана , который заложил её основы в 1854.
Понятие о римановой геометрии. Гладкая поверхность в евклидовом пространстве, рассматриваемая с точки зрения измерений, производимых на ней, оказывается двумерным пространством, геометрия которого (так называемая внутренняя геометрия ), будучи приближённо евклидовой в малом (в окрестности любой точки она совпадает с точностью до малых высшего порядка с геометрией касательной плоскости), точно не является евклидовой; к тому же, как правило, поверхность неоднородна по своим геометрическим свойствам. Поэтому внутренняя геометрия поверхности и есть не что иное, как Р. г. двух измерений, а сама поверхность есть двумерное риманово пространство.
Так, при измерениях на участках земной поверхности, малых в сравнении с размерами земного шара, можно с успехом применять обычную планиметрию, однако результаты измерений на больших участках обнаруживают существенное отклонение от законов планиметрии. Перенесение этих понятий на многомерные пространства приводит к общей Р. г. В основе Р. г. лежат три идеи. Первая идея — признание того, что вообще возможна геометрия, отличная от евклидовой, — была впервые развита Н. И. Лобачевским , вторая — это идущее от К. Ф. Гаусса понятие внутренней геометрии поверхностей и её аналитический аппарат в виде квадратичной формы, определяющей линейный элемент поверхности; третья идея — понятие об n-мерном пространстве, выдвинутое и разработанное в 1-й половине 19 в. рядом геометров. Риман, соединив и обобщив эти идеи (в лекции «О гипотезах, лежащих в основании геометрии», прочитанной в 1854 и опубликованной в 1867), ввёл общее понятие о пространстве как непрерывной совокупности любого рода однотипных объектов, которые служат точками этого пространства (см. Геометрия , раздел Обобщение предмета геометрии, Пространство в математике), и перенёс на эти пространства представления об измерении длин малыми шагами.