Большая Советская Энциклопедия (ЛИ). Страница 81
Из (2) и (3) следует, что по мере приближения изображаемой точки (действительного источника) к фокусу Л. расстояние от изображения до Л. увеличивается; собирающая Л. даёт действительное изображение точки в тех случаях, когда эта точка расположена перед фокусом; если точка расположена между фокусом и Л., её изображение будет мнимым; рассеивающая Л. всегда даёт мнимое изображение действительной светящейся точки (подробнее см. в ст. Изображение оптическое ).
Лит.: Элементарный учебник физики, под ред. Г. С. Ландсберга, 6 изд., т. 3, М., 1970; Тудоровский А. И., Теория оптических приборов, 2 изд., т. 1, М. — Л., 1949.
Г. Г. Слюсарев.

Рис. 1 к ст. Линза.

Рис. 2 к ст. Линза.
Линза (геол.)
Ли'нза (геол.), форма залегания горных пород и руд в виде чечевицы с уменьшающейся к краям мощностью. Размеры Л. различны и колеблются от нескольких м длины и нескольких см мощности до 1 км и более длины и нескольких десятков м мощности. См. также Залегание горных пород .
Линзовая антенна
Ли'нзовая анте'нна, антенна , диаграмма направленности которой формируется за счёт разности фазовых скоростей распространения электромагнитной волны в воздухе и в материале линзы. Л. а. применяется в радиолокационных и измерительных устройствах, работающих в диапазоне сантиметровых волн. Л. а. состоит из собственно линзы и облучателя. Форма линзы зависит от коэффициента преломления n (отношения фазовых скоростей распространения радиоволн в вакууме и линзе). При n > 1 Л. а. (как и линза в оптике) называется замедляющей, а при n < 1 — ускоряющей (последняя не имеет аналогов в оптике). В качестве облучателя Л. а. обычно используется рупорная антенна , создающая сферический фронт волны, или антенные решётки , создающие цилиндрический фронт волны.
Замедляющие Л. а. изготавливаются из высококачественных однородных диэлектрических материалов с малыми потерями (полистирол, фторопласт и др.) или из т. н. искусственных диэлектриков. Последние представляют собой систему металлических частиц различной формы, расположенных в воздухе или в однородном диэлектрике с относительной диэлектрической проницаемостью, близкой к единице. Коэффициент преломления таких искусственных диэлектриков может изменяться в широких пределах при весьма малых потерях. Ускоряющие Л. а. выполняются из металлических пластин определённой формы и не имеют аналогов в оптике. Их принцип действия объясняется зависимостью фазовой скорости электромагнитной волны, распространяющейся между параллельными металлическими пластинами, от расстояния между ними, если вектор её электрического поля параллелен пластинам. В этом случае фазовая скорость больше скорости света и коэффициент преломления меньше единицы. Для уменьшения массы и объёма Л. а. применяется зонирование её поверхностей, позволяющее также значительно уменьшить толщину Л. а. Форма и высота профилей отдельных участков (зон) линзы выбираются так, чтобы электромагнитные волны, преломленные соседними зонами линзы, выходили из неё со сдвигом фаз 360 °; в этом случае поле в раскрыве Л. а. остаётся синфазным.
В апланатических Л. а. и Люнеберга линзе возможно управление диаграммой направленности (сканирование) без существ. искажения формы диаграммы направленности.
О. Н. Терешин, Г. К. Галимов.
Линзовый телескоп
Ли'нзовый телеско'п, астрономический оптический инструмент, в котором изображение небесных светил строится линзовым объективом; то же, что рефрактор .
Линии второго порядка
Ли'нии второ'го поря'дка, плоские линии, декартовы прямоугольные координаты которых удовлетворяют алгебраическому уравнению 2-й степени
a11x2 + a12xy + a22y2 + 2a13x + 2a23y + a11 = 0. (*)
Уравнение (*) может и не определять действительного геометрического образа, но для сохранения общности в таких случаях говорят, что оно определяет мнимую Л. в. п. В зависимости от значений коэффициентов общего уравнения (*) оно может быть преобразовано с помощью параллельного переноса начала и поворота системы координат на некоторый угол к одному из 9 приведённых ниже канонических видов, каждому из которых соответствует определённый класс линий. Именно,
нераспадающиеся линии:


y2 = 2px — параболы,

распадающиеся линии:


x2 - а2 = 0 — пары параллельных прямых,
x2 + а2 = 0 — пары мнимых параллельных прямых,
x2 = 0 — пары совпадающих параллельных прямых.
Исследование вида Л. в. п. может быть проведено без приведения общего уравнения к каноническому виду. Это достигается совместным рассмотрением значений т. н. основных инвариантов Л. в. п. — выражений, составленных из коэффициентов уравнения (*), значения которых не меняются при параллельном переносе и повороте системы координат:


S = a11 + a22, (aij = aji).
Так, например, эллипсы, как нераспадающиеся линии, характеризуются тем, что для них D ¹ 0; положительное значение инварианта d выделяет эллипсы среди других типов нераспадающихся линий (для гипербол d < 0, для парабол d = 0). Различить случаи действительного или мнимого эллипсов позволяет сопоставление знаков инвариантов D и S: если D и S разных знаков, эллипс действительный; эллипс мнимый, если D и S одного знака.
Три основные инварианта D, d и S определяют Л. в. п. (кроме случая параллельных прямых) с точностью до движения евклидовой плоскости: если соответствующие инварианты D, d и S двух линий равны, то такие линии могут быть совмещены движением. Иными словами, эти линии эквивалентны по отношению к группе движений плоскости (метрически эквивалентны).
Существуют классификации Л. в. п. с точки зрения др. групп преобразований. Так, относительно более общей, чем группа движений, — группы аффинных преобразований — эквивалентными являются любые две линии, определяемые уравнениями одного канонического вида. Например, две подобные Л. в. п. (см. Подобие ) считаются эквивалентными. Связи между различными аффинными классами Л. в. п. позволяет установить классификация с точки зрения проективной геометрии , в которой бесконечно удалённые элементы не играют особой роли. Действительные нераспадающиеся Л. в. п.: эллипсы, гиперболы и параболы образуют один проективный класс — класс действительных овальных линий (овалов). Действительная овальная линия является эллипсом, гиперболой или параболой в зависимости от того, как она расположена относительно бесконечно удалённой прямой: эллипс пересекает несобственную прямую в двух мнимых точках, гипербола — в двух различных действительных точках, парабола касается несобственной прямой; существуют проективные преобразования, переводящие эти линии одна в другую. Имеется всего 5 проективных классов эквивалентности Л. в. п. Именно,