Большая Советская Энциклопедия (ЛИ). Страница 78
Лит.: Knuth I., Electrische Maschinen mit geradliniger Bewegung und ihre technische Anwendung, «Electro-Praktiker», 1969, № 1.
Ю. М. Иньков.
Линейный корабль
Лине'йный кора'бль, линкор, 1) в парусном военном флоте 17—1-й половине 19 вв. крупный по размерам трёхмачтовый боевой корабль с 2—3 артиллерийскими палубами (деками); имел от 60 до 135 орудий, устанавливавшихся по бортам в линию и до 800 человек экипажа. Вёл бой, находясь в кильватерной колонне (линии баталии), отчего и получил своё название, перешедшее по традиции к кораблям парового флота.
2) В паровом броненосном флоте один из основных классов самых крупных по размерам артиллерийских надводных кораблей, предназначенных для уничтожения в морском бою кораблей всех классов, а также нанесения мощных артиллерийских ударов по береговым объектам. Л. к. появились во многих флотах мира после русско-японской войны 1904—05 взамен броненосцев . Сначала назывались дредноутами. В России название класса Л. к. установлено в 1907. Л. к. применялись в 1-й мировой войне 1914—18. К началу 2-й мировой войны 1939—45 Л. к. имели стандартное водоизмещение от 20 до 64 тыс. т, вооружение — до 12 башенных орудий главного калибра (от 280 до 460 мм), до 20 орудий противоминной, зенитной или универсальной артиллерии калибра 100—127 мм, до 80—140 зенитных малокалиберных автоматических пушек и крупнокалиберных пулемётов. Скорость хода Л. к. — 20—35 узлов (37—64,8 км/ч), экипаж военного времени — 1500—2800 человек. Бортовая броня достигала 440 мм, вес всей брони составлял до 40% общего веса корабля. На борту Л. к. имелись 1—3 самолёта и катапульта для их взлёта. В ходе войны в связи с возрастанием роли морской, особенно авианосной авиации , а также подводных сил флота и гибелью многих Л. к. от ударов авиации и подводных лодок они утратили значение; после войны во всех флотах почти все Л. к. сданы на слом.
Б. Ф. Балев.

Линейный корабль «Айова» (США). 1943.
Линейный крейсер
Лине'йный кре'йсер, подкласс крейсеров с мощным артиллерийским вооружением, появившийся перед 1-й мировой войной 1914—18. Было построено лишь несколько Л. к., имели водоизмещение от 20 до 42 тыс. т, вооружение — 6—9 башенных орудий калибра 280—380 мм, до 20 113-мм орудий, скорость хода 29—30 узлов (53,7—55,5 км/ч). Л. к. применялись в 1-й мировой войне, а три из оставшихся в ВМС Великобритании и во 2-й мировой войне 1939—45. После войны последний уцелевший Л. к. был сдан на слом.
Линейный оператор
Лине'йный опера'тор, обобщение понятия линейного преобразования на линейные пространства . Линейным оператором F на линейном пространстве Е называют функцию F(x), определённую для всех х Î Е, значения которой суть элементы линейного пространства E1, и обладающую свойством линейности:
F((x + (у) = (F(x) + (F(y),
где х и у — любые элементы из Е, a и b — числа. Если пространства Е и E1 нормированы и величина


Важнейшими конкретными примерами Л. о. в функциональных пространствах являются дифференциальные Л. о.

и интегральные Л. о.

примером Л. о. функций многих переменных может служить Лапласа оператор . Теория Л. о. находит большое применение в различных вопросах математической физики и прикладной математики. См. также Функциональный анализ ,Операторов теория , Спектральный анализ (математический), Собственные значения и собственные функции , Собственные векторы .
Линейный функционал
Лине'йный функциона'л, обобщение понятия линейной формы на линейные пространства . Линейным функционалом f на линейном нормированном пространстве Е называют числовую функцию f(x), определённую для всех х из Е и обладающую следующими свойствами:
1) f(x) линейна, т. е. f((x + (у) = (f(x) + (f(y),
где х и у — любые элементы из Е, a и b — числа;
2) f(x) непрерывна.
Непрерывность f равносильна требованию, чтобы



В пространстве С [a, b] функций a(t), непрерывных при a ( t ( b, с нормой


f2[((t)] = ((t), a ( t( b.
В гильбертовом пространстве Н Л. ф. суть скалярные произведения (l, х), где l — любой фиксированный элемент пространства Н; ими исчерпываются все Л. ф. этого пространства.
Во многих задачах можно из общих соображений установить, что та или иная величина является Л. ф. Например, к Л. ф. приводит решение линейных дифференциальных уравнений с линейными краевыми условиями. Поэтому очень существенным является вопрос об общем аналитическом выражении Л. ф. в разных пространствах.
Совокупность всех Л. ф. данного пространства Е превращается в линейное нормированное пространство



С понятием Л. ф. связано понятие слабой сходимости. Последовательность {xn} элементов линейного нормированного пространства называют слабо сходящейся к элементу х, если

для любого Л. ф. f. См. также Функциональный анализ .
Линейных знаков способ
Лине'йных зна'ков спо'соб, один из картографических способов изображения . Л. з. с. изображаются линии местности (например, водоразделы, тектонические разломы, линии связи, политико-административные границы и др.), объекты линейного протяжения, не выражающиеся в масштабе карты (например, реки и дороги и др.), граничные полосы (например, береговая зона, зональные границы почв и растительности и др.).
Линейчатая геометрия
Лине'йчатая геоме'трия, раздел геометрии, в котором рассматриваются в качестве элементов пространства прямые линии. Как известно, прямая в пространстве определяется четырьмя постоянными — коэффициентами а, b, р, q в уравнениях х = az + р, у = bz + q. Следовательно, величины а, b, р, q можно рассматривать как координаты прямой. Если эти координаты являются функциями одного, двух или трёх параметров, то соответствующие совокупности прямых образуют линейчатые поверхности и т. н. конгруэнции и комплексы прямых. Эти геометрические образы и являются объектом изучения Л. г. Примером линейчатой поверхности может служить однополостный гиперболоид, примером конгруэнции — совокупность общих касательных к двум каким-либо поверхностям, примером комплекса прямых — совокупность касательных к одной какой-либо поверхности.