Большая Советская Энциклопедия (ЛА). Страница 60
Ю. Е. Петров.
Ламинария
Ламина'рия, род бурых водорослей; см. Морская капуста .
Ламинарное течение
Ламина'рное тече'ние (от лат. lamina — пластинка), упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения (рис.). Л. т. наблюдаются или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров. В частности, Л. т. имеют место в узких (капиллярных) трубках, в слое смазки в подшипниках, в тонком пограничном слое , который образуется вблизи поверхности тел при обтекании их жидкостью или газом, и др. С увеличением скорости движения данной жидкости Л. т. может в некоторый момент перейти в неупорядоченное турбулентное течение . При этом резко изменяется сила сопротивления движению. Режим течения жидкости характеризуется т. н. Рейнольдса числом Re. Когда значение Re меньше некоторого критического числа Rekp, имеет место Л. т. жидкости; если Re > Rekp, режим течения может стать турбулентным. Значение Рекр зависит от вида рассматриваемого течения. Так, для течения в круглых трубах Рекр » 2200 (если характерной скоростью считать среднюю по сечению скорость, а характерным размером — диаметр трубы). Следовательно, при Rekp < 2200 течение жидкости в трубе будет Л. т. Расход жидкости при Л. т. в трубе определяется Пуазёйля законом .
Лит.: Тарг С. М., Основные задачи теории ламинарных течений, М. — Л., 1951; Лойцянский Л. Г., Механика жидкости и газа, 3 изд., М., 1970.

Фотография ламинарного течения.
Ламия
Лами'я (Lamia), город в Центральной Греции, близ залива Малиакос Эгейского моря. Административный центр нома Фтиотида. 37,8 тыс. жителей (1971). Переработка табака и хлопка; производство ковров. Л. основан в 5 в. до н. э.
Ламменс Анри
Ламме'нс (Lammens) Анри (1.7.1862, Гент, — 23.4.1937, Бейрут), историк-арабист и исламовед. По происхождению бельгиец. Католический миссионер-иезуит. Профессор университета св. Иосифа в Бейруте (1882—1907, 1920—37) и Папского библейского института в Риме (1908—12). Автор работ по истории раннего ислама, истории, географии и этнографии Древней Аравии и Сирии, арабской литературе 7—8 вв., а также по новой истории Сирии и Ливана.
Лит.: Le Pére Н. Lammens, «Mélanges de l'Université Saint-Yoseph», Beyrouth, v. 21, fasc. 2, 1937/38 (имеется полная библ. тр. Л.); Salibi К. S., Islam and Syria in the writings of Henry Lammens, в кн.: Historians of the Middle East, L., 1962, p. 330—42.
Ламмерт Билль
Ла'ммерт (Lammert) Билль (5.1.1892, Хаген, ныне в ФРГ, — 30.10.1957, Берлин), немецкий скульптор (ГДР). Учился в 1911—13 в Гамбурге и Париже. В 1932 вступил в компартию Германии. Работал в Эссене (с 1922), Париже (1933), СССР (1934—51). Берлине. Член Германской академии искусств (1952), лауреат Национальной премии (1959). Мастер портретной и мемориальной скульптуры («Карл Либкнехт», бронза, 1953, Национальная галерея, Берлин; памятник жертвам фашизма в Равенсбрюке, бронза, 1956—59), отличающейся эмоциональностью и экспрессией сильно и четко вылепленных форм.
Лит.: Will Lammert, Dresden, 1963.

В. Ламмерт. Эскиз фигуры для памятника жертвам фашизма в Равенсбрюке. Глина. 1957.
Лампа бегущей волны
Ла'мпа бегу'щей волны' (ЛБВ), лампа с бегущей волной, электровакуумный прибор , в котором для усиления электромагнитных колебаний СВЧ используется длительное взаимодействие бегущей электромагнитной волны и электронного потока, движущихся в одном направлении. Основное назначение Л. б. в. — усиление колебаний СВЧ (300 Мгц — 300 Ггц) в приёмных и передающих устройствах. Л. б. в. используются также для преобразования и умножения частоты и др. целей. Электровакуумный прибор, работа которого основана на взаимодействии электронного потока и бегущей волны, впервые предложил и запатентовал американский инженер А. Гаев (A. Hoeff) в 1936. Первую Л. б. в. создал американский учёный Р. Компфнер (R. Kompfner) в 1943. Первые теоретические работы по Л. б. в. опубликовал американский физик Дж. Пирс (J. Pierce) в 1947.
Основными частями Л. б. в. (рис.) являются: электронная пушка для создания и формирования электронного потока; замедляющая система , снижающая скорость бегущей волны вдоль оси Л. б. в. до скорости, близкой к скорости электронов, для синхронного движения волны с электронным потоком (обычно используется металлическая спираль, жестко закрепленная продольными диэлектрическими опорами и отличающаяся слабой зависимостью скорости бегущей вдоль неё волны от частоты, благодаря чему достигается эффективное взаимодействие волны с электронным потоком в широкой полосе частот); фокусирующая система (периодическая система постоянных магнитов, соленоид или др.) для удержания магнитным полем электронного потока в заданных границах поперечного сечения по всей его длине; коллектор для улавливания электронов; ввод и вывод энергии электромагнитных колебаний; поглотитель энергии колебаний СВЧ на небольшом участке замедляющей системы для устранения самовозбуждения Л. б. в. из-за отражений волн от концов замедляющей системы.
Механизм взаимодействия электронного потока с электромагнитной волной можно объяснить следующим образом. Электроны, синхронно двигаясь вместе с волной, под воздействием ускоряющих (положительная полуволна) и тормозящих (отрицательная полуволна) участков её электрического поля группируются в сгустки. Последние располагаются в тех местах поля, где ускоряющая электроны полуволна переходит в тормозящую. В случае равенства скоростей волны и электронов обмена энергией между ними нет, усиление отсутствует. Если скорость электронов немного превышает скорость волны, сгустки электронов, обгоняя волну, входят в тормозящие участки поля и под их действием тормозятся. Кинетическая энергия, потерянная электронами при торможении, переходит в энергию бегущей волны.
Л. б. в. широкополосны: полоса пропускания частот у многих типов Л. б. в. превышает октаву . В зависимости от назначения Л. б. в. выпускаются на выходные мощности от долей мвт (входные маломощные и малошумящие Л. б. в. в усилителях СВЧ) до десятков квт (выходные мощные Л. б. в. в передающих устройствах СВЧ) в непрерывном режиме и до нескольких Мвт в импульсном режиме работы. Л. б. в. дают большое усиление — обычно от 30 до 60 дб. Кпд Л. б. в. средней и большой мощности невысок — около 30%. Для входных каскадов усиления в широкой полосе частот выпускаются Л. б. в. с выходной мощностью от 10-4 до 10 вт и низким коэффициентом шума (от 3 до 20 дб). Наряду с рассмотренными Л. б. в. применяются Л. б. в. типа М. О механизме работы последних см. в ст. Магнетронного типа приборы .
Лит.: Пирс Дж. P., Лампа с бегущей волной, пер. с англ., М., 1952; Коваленко В. Ф., Введение в электронику сверхвысоких частот, 2 изд., М., 1955; Сретенский В. Н., Основы применения электронных приборов сверхвысоких частот, М., 1963; Жуков Б. С., Перегонов С. А., Лампы бегущей волны, М., 1967.
Е. Н. Смирнов.

Схематическое изображение лампы бегущей волны: 1 — электронная пушка; 2 — замедляющая система; 3 — фокусирующая система соленоидного типа; 4 — коллектор; 5 — вывод энергии; 6 — поглотитель энергии колебаний СВЧ; 7 — ввод энергии.