Большая Советская Энциклопедия (КВ). Страница 46
Точность рубидиевых К. ч. обусловлена также постоянством интенсивности света лампы накачки, поэтому применяются системы автоматического регулирования интенсивности. Возможно создание рубидиевых К. ч., в которых вместо описанной системы оптической индикации используется квантовый генератор с парами рубидия. В этих К. ч. применяются настолько интенсивная оптическая накачка и резонатор со столь высокой добротностью, что в нём выполняются условия самовозбуждения. При этом пары 87Rb, наполняющие колбу внутри резонатора, излучают электромагнитные волны на частоте 6835 Мгц. Радиосхема таких К. ч. также содержит кварцевый генератор и синтезатор, но в отличие от предыдущего частота кварцевого генератора управляется системой фазовой автоподстройки, в которой опорной является частота сигнала рубидиевого генератора.
Лит.: Квантовая электроника. Маленькая энциклопедия, М., 1969, с. 35, 241; Григорьянц В. В., Жаботинский М. Е., Золин В. Ф., Квантовые стандарты частоты, М., 1968, с. 171.
М. Е. Жаботинский.

Рис. 1. Блок-схема квантовых часов с фазовой автоматической подстройкой частоты.

Рис. 3. Схема рубидиевого стандарта частоты с оптической накачкой: 1 — лампа, освещающая колбу 2, наполненную парами 87Rb; 3 — объёмный резонатор; 4 — фотодетектор; 5 — усилитель низкой частоты; 6 — фазовый детектор; 7 — генератор низкой частоты; 8 — кварцевый генератор; 9 — умножитель частоты.

Рис. 4. Уровни энергии атомов 87Rb, используемые в рубидиевых часах.

Рис. 2. Первые квантовые часы, построенные в Национальном бюро стандартов США, с молекулярным аммиачным генератором в качестве квантового стандарта частоты.
Квантовые числа
Ква'нтовые чи'сла, целые (0, 1, 2,...) или полуцелые (1/2, 3/2, 5/2,...) числа, определяющие возможные дискретные значения физических величин, которые характеризуют квантовые системы (атомное ядро, атом, молекулу) и отдельные элементарные частицы. Применение К. ч. в квантовой механике отражает черты дискретности процессов, протекающих в микромире, и тесно связано с существованием кванта действия, или Планка постоянной ,

Набор К. ч., исчерпывающе определяющий состояние квантовой системы, называется полным. Совокупность состояний, отвечающих всем возможным значениям К. ч. из полного набора, образует полную систему состояний. Состояние электрона в атоме определяется четырьмя К. ч. соответственно четырём степеням свободы электрона (3 степени свободы связаны с тремя координатами, определяющими пространственное положение электрона, а четвёртая, внутренняя, степень свободы — с его спином ). Для атома водорода и водородоподобных атомов эти К. ч., образующие полный набор, следующие.
Главное К. ч. n = 1, 2, 3,... определяет уровни энергии электрона.
Азимутальное (или орбитальное) К. ч. l = 0, 1, 2,..., n —1 задаёт спектр возможных значений квадрата орбитального момента количества движения электрона:

Магнитное К. ч. mlхарактеризует возможные значения проекции Mlzорбитального момента Ml на некоторое, произвольно выбранное, направление (принимаемое за ось z):

Магнитное спиновое К, ч., или просто спиновое К. ч., msхарактеризует возможные значения проекции спина электрона и может принимать 2 значения:
ms = ± 1/2.
Задание состояния электрона с помощью К. ч. n, l, ml и ms не учитывает так называемой тонкой структуры энергетических уровней — расщепления уровней с данным n (при n ³ 2) в результате влияния спина на орбитальное движение электрона (см. Спин-орбитальное взаимодействие ). При учёте этого взаимодействия для характеристики состояния электрона вместо ml и ms применяют К. ч. j и mj).
К. ч. j полного момента количества движениям электрона (орбитального плюс спинового) определяет возможные значения квадрата полного момента:

Магнитное квантовое число полного моментах; определяет возможные значения проекции полного момента на ось z, Mz = hmj; может принимать 2l + 1 значений: mj = —j, —j + 1,..., + j.
Те же К. ч. приближённо описывают состояния отдельных электронов в сложных (многоэлектронных) атомах (а также состояния отдельных нуклонов — протонов и нейтронов — в атомных ядрах). В этом случае n нумерует последовательные (в порядке возрастания энергии) уровни энергии с заданным l. Состояние же многоэлектронного атома в целом определяется следующими К. ч.: К. ч. полного орбитального момента атома L, определяемого движением всех электронов, L = 0, 1, 2,...; К. ч. полного момента атома J, которое может принимать значения с интервалом в 1 от J = |L—S| до J = |L + S|, где S — полный спин атома (в единицах


Для характеристики состояния атома и вообще квантовой системы вводят ещё одно К. ч. — чётность состояния Р, которое принимает значения + 1 или — 1 в зависимости от того, сохраняет волновая функция , определяющая состояние системы, знак при отражении координат r относительно начала координат (т. е. при замене r ® - r) или меняет его на обратный. Чётность Р для атома водорода равна (—1) l, а для многоэлектронных атомов (—1) L.
К. ч. оказались также удобными для формулировки отбора правил , определяющих возможные типы квантовых переходов.
В физике элементарных частиц и в ядерной физике вводится ряд др. К. ч. Квантовые числа элементарных частиц — это внутренние характеристики частиц, определяющие их взаимодействия и закономерности взаимных превращений. Кроме спина s, который может быть целым или полуцелым числом (в единицах
