Большая Советская Энциклопедия (ИО). Страница 13

  Фотоионизация играет существенную роль, например, в процессах И. верхних слоев атмосферы (см. Ионосфера ), в образовании стримеров при пробое электрическом газа и т. д.

  Ионизованные газы и жидкости обладают электропроводностью , что, с одной стороны, лежит в основе разнообразных применений процессов И., а с другой стороны, даёт возможность измерять степень И. этих сред, т. е. отношение концентрации заряженных частиц в них к исходной концентрации нейтральных частиц.

  Процессом, обратным И., является рекомбинация ионов и электронов — образование из них нейтральных атомов и молекул. Защищенный от внешних воздействий газ при обычных температурах в результате рекомбинации очень быстро переходит в состояние, в котором степень его И. пренебрежимо мала. Поэтому поддержание заметной И. в газе возможно лишь при действии внешнего ионизатора (потоки частиц, фотонов, нагревание до высокой температуры). При определённой концентрации заряженных частиц ионизованный газ превращается в плазму , резко отличающуюся по своим свойствам от газа нейтральных частиц.

  Особенность И. жидких растворов состоит в том, что в них молекулы растворённого вещества распадаются на ионы уже в самом процессе растворения без всякого внешнего ионизатора, за счёт взаимодействия с молекулами растворителя. Взаимодействие между молекулами приводит к самопроизвольной И. и в некоторых чистых жидкостях (вода, спирты, кислоты). Этот дополнительный механизм И. в жидкостях называется электролитической диссоциацией .

  2) И. в твёрдом теле — процесс превращения атомов твёрдого тела в заряженные ионы, связанный с переходом электронов из валентной зоны кристалла в зону проводимости (в случае примесных атомов — с потерей или захватом ими электронов). Энергия И. W в твёрдом теле имеет величину порядка ширины запрещенной зоны E (см. Твёрдое тело ). В кристаллах с узкой запрещенной зоной электроны могут приобретать W за счёт энергии тепловых колебаний атомов (термическая И.); при фотоионизации необходимые энергии сообщаются электронам проходящими через твёрдое тело (или поглощаемыми в нём) фотонами. И. происходит также, когда через тело проходит поток заряженных (электроны, протоны) или нейтральных (нейтроны) частиц.

  Особый интерес представляет ударная И. в сильном электрическом поле, наложенном на твёрдое тело. В таком поле участвующие в электропроводности электроны в зоне проводимости могут приобрести кинетические энергии большие, чем E, и «выбивать» электроны из валентной зоны, где они не участвуют в электропроводности. При этом в валентной зоне образуются дырки , а в зоне проводимости вместо каждого «быстрого» электрона появляется два «медленных», которые, ускоряясь в поле, могут, в свою очередь, стать «быстрыми» и вызвать И. Вероятность ударной И. возрастает с ростом напряжённости электрического поля. При некоторой критической напряжённости ударная И. приводит к резкому увеличению плотности тока, т. е. к электрическому пробою твёрдого тела.

  Лит.: Грановский В. Л., Электрический ток в газе. Установившийся ток, М., 1971; Месси Г., Бархоп Е., Электронные и ионные столкновения, пер. с англ., М., 1958; Энгель А., Ионизованные газы, пер. с англ., М., 1959; Федоренко Н. В., Ионизация при столкновениях ионов с атомами, «Успехи физических наук», 1959, т. 68, в. 3; Атомные и молекулярные процессы, под ред. Д. Бейтса, пер. с англ., М., 1964; Вилесов Ф. И., Фотоионизация газов и паров вакуумным ультрафиолетовым излучением, «Успехи физических наук», 1963, т. 81, в. 4; Райзер Ю. П., Пробой и нагревание газов под действием лазерного луча, там же, 1965, т. 87, в. 1; Физика твёрдого тела, сб. статей, №2, М.—Л., 1959; Вул Б. М., О пробое переходных слоев в полупроводниках, «Журнал технической физики», 1956, т. 26, в, 11; Келдыш Л. В., Кинетическая теория ударной ионизации в полупроводниках, «Журнал экспериментальной и теоретической физики», 1959, т.37, в. 3.

Большая Советская Энциклопедия (ИО) - i009-001-213791470.jpg

Рис. 1. Ионизация атомов и молекул водорода электронным ударом: 1 — атомы H; 2 — молекулы H2 (экспериментальные кривые).

Большая Советская Энциклопедия (ИО) - i009-001-216068173.jpg

Рис. 2. Ионизация аргона ионами He+. На оси абсцисс отложена скорость ионизующих частиц. Пунктирные кривые — ионизация аргона электронным ударом.

Ионизация поверхностная

Иониза'ция пове'рхностная, см. Поверхностная ионизация .

Ионизирующие излучения

Ионизи'рующие излуче'ния, ионизующие излучения, излучения, взаимодействие которых со средой приводит, в конечном счёте, к ионизации атомов и молекул. К И. и. относятся: электромагнитное излучение, потоки a-частиц, электронов, позитронов, протонов, нейтронов и др. заряженных и нейтральных частиц. Заряженные частицы ионизуют атомы среды непосредственно при столкновениях, если их кинетическая энергия достаточна для ионизации . При прохождении через среду потоков нейтральных частиц (нейтронов) или фотонов (квантов рентгеновского и g-излучений) ионизация обусловлена вторичными заряженными частицами, возникающими в результате взаимодействия первичных частиц со средой.

  И. и. играют большую роль в различных физических и химических процессах, в биологии, медицине, сельском хозяйстве и промышленности. Многие химические реакции под влиянием И. и. осуществляются с большей лёгкостью или протекают при значительно меньших температурах и давлениях (см. Радиационная химия ). И. н. применяются для стерилизации, пастеризации и хранения пищевых продуктов, фармацевтических препаратов и т. д. В результате действия И. и. можно получить разнообразные мутации у микроорганизмов и растений (см. Биологическое действие ионизирующих излучений ).

  Одновременно И. и. действуют разрушительным образом на вещество (см., например, Радиационные эффекты в твёрдом теле , Доза , Радиобиология , Лучевая терапия ). О регистрации И. и. см. в ст. Детекторы ядерных излучений .

Ионийская школа

Иони'йская шко'ла, стихийно-материалистическое направление древнегреческой философии, возникшее и развившееся в ионийских колониях Греции в 6—4 вв. до н. э. Зародилась в г. Милет; её представители — Фалес , Анаксимандр и Анаксимен (милетская школа), Гераклит Эфесский. И. ш. принято противопоставлять пифагорейской, элейской и аттической школам. Одна из основных идей, впервые выдвинутых философами И. ш., — мысль о единстве всего сущего, о происхождении всех вещей из некоторого единого первоначала, которое понималось при этом как та или иная вещественная стихия (вода у Фалеса, воздух у Анаксимена, огонь у Гераклита) или как «беспредельное», из которого выделились основные противоположности тёплого и холодного (апейрон Анаксимандра). Сочинения представителей И. ш. написаны на ионическом диалекте, в отличие от аттического диалекта произведений Платона и Аристотеля.

  Лит.: Михайлова Э. Н., Чанышев А. Н., Ионийская философия, М., 1966.

  А. О. Маковельский.

Ионийский лад

Иони'йский лад (музыкальное), один из старинных ладов, соответствующий современному натуральному мажору. См. Натуральные лады , Средневековые лады .

Ионийцы

Иони'йцы, ионяне (Íones), одно из основных древнегреческих племён. И. получили название от легендарного героя Иона, считавшегося родоначальником племени. Занимали территорию Аттики, часть о. Эвбея, острова Хиос, Самос, Наксос и др. В 11—9 вв. до н. э. они колонизовали среднюю часть западного побережья Малой Азии (область Ионии ), потом побережья Чёрного и Мраморного морей. На ионийском диалекте, который получил широкое распространение, сохранилась большая литература (например, поэмы Гомера, сочинения Геродота) и значительное количество эпиграфических памятников.




Перейти на страницу:
Изменить размер шрифта: