Большая Советская Энциклопедия (ДР). Страница 15
При оценке свойств Д. как конструкционного и поделочного материала учитывают её способность удерживать металлические крепления (гвозди, шурупы), износостойкость, способность к загибу некоторых лиственных пород.
Д. имеет высокие значения коэффициента качества (отношение предела прочности к плотности), хорошо сопротивляется ударным и вибрационным нагрузкам, легко обрабатывается и позволяет изготовлять детали сложной конфигурации, надёжно соединяется в изделиях и конструкциях с помощью клея, обладает высокими декоративными свойствами. Однако наряду с положительными свойствами натуральная Д. обладает рядом недостатков: размеры и форма деталей изменяются при колебаниях влажности. При неблагоприятных условиях хранения и эксплуатации (повышенная влажность Д., умеренно высокая температура воздуха, контакт с влажной почвой, конденсация влаги на элементах конструкций и т.д.) Д. загнивает. Гниение представляет собой процесс разрушения Д. в результате жизнедеятельности поселяющихся на ней грибов. Для защиты от загнивания Д. пропитывают антисептиками (см. Антисептические средства ). Д. может также повреждаться насекомыми, для защиты от которых используют инсектициды . Ввиду сравнительно малой огнестойкости Д. при необходимости пропитывают антипиренами .
Народнохозяйственное значение Д. Как конструкционный материал Д. широко применяется в строительстве (деревянные конструкции, столярные детали), на ж.-д. транспорте и линиях связи [шпалы, опоры линий электропередач (ЛЭП)], в горной промышленности (крепь), в машино- и судостроении, в производстве мебели, музыкальных инструментов, спортинвентаря; как сырьё в целлюлозно-бумажной промышленности и для др. видов химической переработки (например, гидролиз, сухая перегонка), а также как топливо. О заготовке Д. см. в ст. Лесозаготовки .
Таблица 3. — Электрические и акустические свойства древесины
Показатели | Порода | Вдоль волокон | Поперёк волокон | |
радиальное направ- ление | тангенциа- льное нап- равление | |||
Удельное объёмное электросопротивление при W=8%, 108ом·м | Лиственница | 3,8 | 19 | 14,5 |
Берёза | 4,2 | 86 | — | |
Пробивное напряжение при W= 8-9%, кв/см | Бук | 14 | 41,5 | 52 |
Берёза | 15 | 59,8 | — | |
Диэлектрическая проницаемость при W=0 и частоте 1000 гц | Ель | 3,06 | 1,91 | 1,98 |
Бук | 3,18 | 2,40 | 2,20 | |
Тангенс угла потерь | Ель | 0,0625 | 0,0310 | 0,0345 |
Бук | 0,0585 | 0,0319 | 0,0298 | |
Скорость распространения звука, м/сек | Сосна | 5030 | 1450 | 850 |
Дуб | 4175 | 1665 | 1400 |
Таблица 4. — Плотность и механические свойства малых чистых (без пороков) образцов древесины при влажности 12%
Показатели | Порода | |||||
Лиственница | Сосна | Ель | Дуб | Берёза | Осина | |
Плотность, кг/м3 | 660 | 500 | 445 | 690 | 630 | 495 |
Предел прочности вдоль волокон, Мн/м2(кгс/см2): при сжатии | 64,5 (645) | 48,5 (485) | 44,5 (445) | 57,5 (575) | 55,0(550) | 42,5 (425) |
при статическом изгибе | 111,5 (1115) | 86,0 (860) | 79,5 (795) | 107,5 (1075) | 109,5(1095) | 78,0 (780) |
при растяжении | 125,0 (1250) | 103,5(1035) | 103,0(1030) | 168,0(1680) | 125,5(1255) | |
при скалывании радиальном | 9,9 (99) | 7,5 (75) | 6,9 (69) | 10,2(102) | 9,3 (93) | 6,3 (63) |
тангенциальном | 9,4 (94) | 7,3 (73) | 6,8 (68) | 12,2 (122) | 11,2 (112) | 8.6 (86) |
Ударная вязкость, кдж/м2(кгс·м/см2) | 52 (0,53) | 41 (0,42) | 39 (0,40) | 77 (0,78) | 93 (0,95) | 84 (0,86) |
Твёрдость, Мн/м2(кгс/см2): торцовая..........….... | 43,5 (435) | 28,0 (285) | 26,0 (260) | 67,5 (675) | 46,5 (465) | 26,5 (265) |
боковая......……...... | 29,0 (290) | 24,0 (245) | 18,0 (180) | 52,5 (525) | 35,0 (350) | 20,0 (200) |
Лит.: Ванин С. И., Древесиноведение, 3 изд., М.—Л., 1949; Яценко-Хмелевский А. А., Основы и методы анатомических исследований древесины, М.—Л., 1954; Москалева В. Е., Строение древесины и её изменение при физических и механических воздействиях, М., 1957; Вихров В. Е., Диагностические признаки древесины главнейших лесохозяйственных и лесопромышленных пород СССР, М., 1959; Никитин Н. И., Химия древесины и целлюлозы, М.—Л., 1962; Древесина. Показатели физико-механических свойств, М., 1962; Уголев Б. Н., Испытания древесины и древесных материалов, М., 1965; Перелыгин Л. М., Древесиноведение, 2 изд., М., 1969; Леонтьев Н. Л., Техника испытаний древесины, М., 1970; Уголев Б. Н., Деформативность древесины и напряжения при сушке, М., 1971.
Б. Н. Уголев.

Рис. 1. Основные части ствола и его главные разрезы: 1 — поперечный; 2 — радиальный; 3 — тангенциальный.

Рис. 2. Типы клеток, слагающих древесину: а — древесинная паренхима; б — трахеиды; в — членики сосудов (трахей); г — волокна либриформа; д — клетки гетерогенного сердцевинного луча хвойного дерева; е — клетки гетерогенного сердцевидного луча лиственного дерева.

Рис. 5. Зависимость равновесной влажности древесины Wp от влажности j и температуры t воздуха.

Рис. 4. Участки срезов древесины сосны: 1 — поперечного; 2 — радиального; 3 — тангенциального; а — граница годичного кольца; б — поздняя древесина; в — ранняя древесина: г — новый ряд вклинивающихся трахеид; д — гетерогенный сердцевинный луч, состоящий из лучевых трахеид (е) с мелкими окаймленными порами и паренхимных клеток с большими окновидными порами (ж); з — смоляной ход (хорошо видны выстилающие его эпителиальные клетки); и — клетки паренхимы, окружающие смоляной ход; к — окаймленные поры; л — сердцевинный луч с горизонтальным смоляным ходом.

Рис. 6. Зависимость удельной теплоёмкости древесины С от температуры t и влажности W.

Рис. 3. Схема расположения сосудов древесины на поперечном сечении годичного кольца: 1 — клёна (рассеянно-сосудистая); 2 — вяза (кольцесосудистая).

Рис. 7. Зависимость коэффициента теплопроводности древесины lном от температуры t и влажности W.
Древесина модифицированная
Древеси'на модифици'рованная, древесина, обработанная каким-либо химическим веществом (синтетической смолой, аммиаком и др.) с целью повышения её механических свойств и придания водостойкости. В большинстве случаев пропитка древесины осуществляется под давлением, полимеризация или поликонденсация вводимых в древесину химических веществ (мономеров , олигомеров и др.) достигается термической обработкой, облучением рентгеновскими и a-, b-, g-лучами в присутствии катализаторов . Д. м. по сравнению с натуральной обладает увеличенной прочностью на статический изгиб (на 75%); пониженными водопоглощением (в 3—5 раз) и абразивным износом (в 1,5—2 раза). Д. м. применяют для изготовления подшипников скольжения в узлах с.-х. машин, деталей, работающих в агрессивных средах, литейных моделей и копиров и др.