Большая Советская Энциклопедия (АН). Страница 77

Анизометр магнитный

Анизоме'тр магни'тный (от греч. ánisos — неравный и ...метр ), прибор для определения магнитной анизотропии . Современный А. м. появились в 30-х гг. в связи с развитием теории ферромагнетизма и созданием ферромагнитных сплавов. Наиболее распространены А. м. для определений ферромагнитной анизотропии монокристаллов и текстурованных материалов (см. Текстура ,Текстура магнитная ).

  В одном из распространённых типов А. м. исследуемый образец помещают в сильное однородное магнитное поле Н (рис. 1). Образец намагничивается по направлению поля лишь в том случае, если поле направлено вдоль оси лёгкого намагничивания (ось OO на рис. 1). Во всех остальных случаях вектор намагниченности I занимает некоторое промежуточное положение между направлением Н и осью OO. Его можно разложить на компоненты I// и I^ вдоль и поперёк поля. Компонента I^ создаёт момент вращения М = I^·H, который стремится повернуть образец, подобно тому, как магнитное поле Земли поворачивает магнитную стрелку, поставленную в направление восток — запад, в положение север — юг. Момент вращения, вызванный действием магнитного поля, компенсируется моментом, создаваемым упругими элементами прибора (2 на рис. 3). Угол поворота образца отсчитывается по шкале. Измерения производятся при различных направлениях поля Н (поворотом магнита плавно меняют угол a от 0 до 180 или 360°). Результаты измерений позволяют рассчитать константы анизотропии и оценить степень совершенства текстуры. Современный лабораторный А. м. этого типа, созданный в НИИЧЕРМЕТ (рис. 2), обладает рядом преимуществ по сравнению с др. аналогичными приборами: он позволяет проводить исследования как массивных образцов, так и ферромагнитных плёнок в интервале температур от 1300 К (1027°C) до гелиевых (~1 К; ~ —272°С) и в магнитных полях напряженностью до 4000 ка/м (50 кэ).

  Существует ряд других типов А. м., предназначенных, в частности, для измерений магнитной анизотропии материалов в производственных условиях (без вырезки образца).

  Лит.: Акулов Н., Брюхатов Н., Метод количественного определения текстуры вальцованного материала, «Журнал экспериментальной и теоретической физики», 1933, т. 3, в. 1, с. 59; Пузей И. М., Температурная зависимость энергии магнитной анизотропии в никеле, «Изв. АН СССР. Сер. физическая», 1957, т. 21, № 8, с. 1088; Григоров К. В., Магнитный текстурометр, «Заводская лаборатория», 1947, т. 13, № 9, с. 1073.

  И. М. Пузей.

Большая Советская Энциклопедия (АН) - i009-001-202331132.jpg

Рис. 1. Исследуемый образец (диск) в магнитном поле H : I — вектор намагниченности образца; a — угол между направлением магнитного поля и осью лёгкого намагничивания.

Большая Советская Энциклопедия (АН) - i009-001-205773186.jpg

Рис. 3. Схема магнитного анизометра, основанного на измерении вращательного момента (конструкция НИИЧЕРМЕТ): 1 — образец; 2 — упругие элементы; 3 — зеркало; 4 — источник света; 5 — шкала; N, S — полюсы магнита (масса магнитной части прибора составляет 4,5 т).

Большая Советская Энциклопедия (АН) - i010-001-269435766.jpg

Рис. 2. Внешний вид магнитного анизометра, основанного на измерении вращательного момента (конструкция НИИЧЕРМЕТ).

Анизотропия

Анизотропи'я (от греч. ánisos — неравный и tróроs — направление), зависимость физических свойств вещества (механических, тепловых, электрических, магнитных, оптических) от направления (в противоположность изотропии — независимости свойств от направления). Примеры А.: пластинка слюды легко расщепляется на тонкие листочки только вдоль определённой плоскости (параллельно этой плоскости силы сцепления между частицами слюды наименьшие); мясо легче режется вдоль волокон, хлопчатобумажная ткань легко разрывается вдоль нитки (в этих направлениях прочность ткани наименьшая).

  Естественная А. — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца , кубики каменной соли, восьмиугольные кристаллы алмаза , разнообразные, но всегда шестиугольные звёздочки снежинок. Анизотропны, однако, не все свойства кристаллов. Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. А. остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия кристаллов .

  При нагревании шара из изотропного вещества он расширяется во все стороны равномерно, т. е. остаётся шаром. Кристаллический шар при нагревании изменит свою форму, например превратится в эллипсоид (рис. 1, а). Может случиться, что при нагревании шар будет расширяться в одном направлении и сжиматься в другом (поперечном к первому, рис. 1, б). Температурные коэффициенты линейного расширения вдоль главной оси симметрии кристалла (a//) и перпендикулярно этой оси (a^) различны по величине и знаку.

Таблица 1. — Температурные коэффициенты линейного расширения некоторых кристаллов вдоль главной оси симметрии кристалла и в перпендикулярном ей направлении

α//·106, град-4 α^·106, град-4
Олово 30,5 15,5
Кварц 13,7 7,5
Графит 28,2 —1,5
Теллур —1,6 27,2

  Аналогично различаются удельные электрические сопротивления кристаллов вдоль главной оси симметрии r// и перпендикулярно ей r^.

Таблица 2. — Удельное электрическое сопротивление некоторых кристаллов вдоль главной оси симметрии и перпендикулярно ей (1 ом·см = 0,01 ом·м)

Магний r//·106, ом·см r^ ом·см
3,37 4,54
Цинк 5,83 5,39
Кадмий 7,65 6,26
Олово (белое) 13,13 9,05

  При распространении света в прозрачных кристаллах (кроме кристаллов с кубической решёткой) свет испытывает двойное лучепреломление и поляризуется различно в разных направлениях (оптическая А.). В кристаллах с гексагональной, тригональной и тетрагональной решётками (например, в кристаллах кварца ,рубина и кальцита ) двойное лучепреломление максимально в направлении, перпендикулярном к главной оси симметрии, и отсутствует вдоль этой оси. Скорость распространения света в кристалле v или показатель преломления кристалла n различны в различных направлениях. Например, у кальцита показатели преломления видимого света вдоль оси симметрии n// и перпендикулярно ей n ^ равны: n// = 1,64 и n ^ = 1,58; у кварца: n//= 1,53, n ^ = 1,54.

  Механическая А. состоит в различии механических свойств — прочности, твёрдости, вязкости, упругости — в разных направлениях. Количественно упругую А. оценивают по максимальному различию модулей упругости . Так, для поликристаллических металлов с кубической решёткой отношение модулей упругости вдоль ребра и вдоль диагонали куба для железа равно 2,5, для свинца 3,85, для бета-латуни 8,7. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (табл. 3).




Перейти на страницу:
Изменить размер шрифта: