Большая Советская Энциклопедия (АК). Страница 60

  А. и. тесно переплетаются с электрическими измерениями и проводятся главным образом электронной измерительной аппаратурой. Трудность А. и. обусловлена сложным пространственным распределением звуковых величин в помещениях, а также изменчивостью звуков и шумов во времени.

  Для измерений звукового давления служит измерительный микрофон в воздухе или гидрофон в воде. Приёмная часть этих приборов (собственно микрофоны и гидрофоны) преобразует поступающие звуковые сигналы (давления) в пропорциональные им электрические напряжения, которые затем подаются на вход измерительных усилителей с индикаторными приборами для отсчёта показаний. Для измерений различных шумов применяется шумомер .

  Важный раздел А. и. — измерения в строительной и архитектурной акустике — измерения звукоизоляции перегородок и перекрытий и коэффициент звукопоглощения разных строительных покрытий (штукатурок, обивок, полов и т. д.).

  Имеются и др. виды А. и.: измерения характеристик звукопроводов, испытания акустических приборов связи и вещания — передатчиков и приёмников звука, испытание магнитофонов и проигрывателей, телефонов связи. Особую и значительную группу А. и. составляют субъективные измерения чувствительности слуха людей, а также отклонений от нормы (аудиометрия ).

  Лит.: Беранек Л., Акустические измерения, пер. с англ., М., 1952; Клюкин И. И., Колесников А. Е., Акустические измерения в судостроении, 2 изд., Л., 1968.

  И.Г. Русаков.

Акустические материалы

Акусти'ческие материа'лы. Подразделяются на звукопоглощающие материалы и звукоизоляционные прокладочные материалы.

  Звукопоглощающие материалы применяются в основном в звукопоглощающих облицовках производственных помещений и технических устройств, требующих снижения уровня шумов (промышленные цехи, машинописные бюро, установки вентиляции и кондиционирования воздуха и др.), а также для создания оптимальных условий слышимости и улучшения акустических свойств помещений общественных зданий (зрительные залы, аудитории, радиостудии и пр.). Звукопоглощающая способность материалов обусловлена их пористой структурой и наличием большого числа открытых сообщающихся между собой пор, максимальный диаметр которых обычно не превышает 2 мм (общая пористость должна составлять не менее 75% по объёму). Большая удельная поверхность материалов, создаваемая стенками открытых пор, способствует активному преобразованию энергии звуковых колебаний в тепловую энергию вследствие потерь на трение. Эффективность звукопоглощающих материалов оценивается коэффициентом звукопоглощения a, равным отношению количества поглощённой энергии к общему количеству падающей на материал энергии звуковых волн.

  Звукопоглощающие материалы имеют волокнистое, зернистое или ячеистое строение и могут обладать различной степенью жёсткости (мягкие, полужёсткие, твёрдые). Мягкие звукопоглощающие материалы изготовляются на основе минеральной ваты или стекловолокна с минимальным расходом синтетического связующего (до 3% по массе) или без него. К ним относятся маты или рулоны с объёмной массой до 70 кг/м3, которые обычно применяются в сочетании с перфорированным листовым экраном (из алюминия, асбестоцемента, жёсткого поливинилхлорида) или с покрытием пористой плёнкой. Коэффициент звукопоглощения этих материалов на средних частотах (250—1000 гц) от 0,7 до 0,85.

  К полужёстким материалам относятся минераловатные или стекловолокнистые плиты размером (мм) 500 × 500 ×20 с объёмной массой от 80 до 130 кг/м3 при содержании синтетического связующего от 10 до 15% по массе, а также древесноволокнистые плиты с объёмной массой 180—300 кг/м3. Поверхность плит покрывается пористой краской или плёнкой. Коэффициент звукопоглощения полужёстких материалов на средних частотах составляет 0,65—0,75. В эту же группу входят звукопоглощающие плиты из пористых пластмасс, имеющие ячеистое строение (пенополиуретан, полистирольный пенопласт и др.).

  Твёрдые материалы волокнистого строения изготовляются в виде плит «Акминит» и «Акмигран» (СССР), «Травертон» (США) и др. размером (мм) 300 × 300 × 20 на основе гранулированной или суспензированной минеральной ваты и коллоидного связующего (крахмальный клейстер, раствор карбоксиметилцеллюлозы). Поверхность плит окрашена и имеет различную фактуру (трещиноватую, рифлёную, бороздчатую). Объёмная масса 300—400 кг/м3, коэффициент звукопоглощения на средних частотах 0,6—0,7. Разновидность твёрдых материалов — плиты и штукатурные растворы, в состав которых входят пористые заполнители (вспученный перлит, вермикулит, пемза) и белые или цветные портландцементы. Применяются также звукопоглощающие плиты, в которых древесная шерсть связана цементным раствором (т. н. акустический фибролит). Выбор материала зависит от акустического режима, назначения и архитектурных особенностей помещения.

  Звукоизоляционные прокладочные материалы применяются в виде рулонов или плит в конструкциях междуэтажных перекрытий, во внутренних стенах и перегородках, а также как виброизоляционные прокладки под машины и оборудование. Характеризуются малым значением динамического модуля упругости, как правило, не превышающим 1,2 Мн/м2 (12 кгс/см2), при нагрузке 20 Мн/м2 (200 кгс/м2). Упругие свойства скелета материала и наличие воздуха, заключённого в его порах, обусловливают гашение энергии удара и вибрации, что способствует снижению структурного и ударного шума. Различают звукоизоляционные прокладочные материалы, изготовляемые из волокон органического или минерального происхождения (древесноволокнистые плиты, минераловатные и стекловолокнистые рулоны и плиты толщиной от 10 до 40 мм, объёмная масса 30—120 кг/м3), а также из эластичных газонаполненных пластмасс (пенополиуретан, пенополивинилхлорид, латексы синтетических каучуков), выпускаемых в виде плит толщиной от 5 до 30 мм; объёмная масса эластичного пенополиуретана 40—70 кг/м3, пенополивинилхлорида 70—270 кг/м3. В ряде случаев для целей звукоизоляции применяются штучные прокладки из литой или губчатой резины.

  Лит.: Цвиккер К. и Костен К., Звукопоглощающие материалы, пер. с англ., М., 1952; Борьба с шумом, под ред. Е. Я. Юдина, М., 1964; Звукопоглощающие и звукоизоляционные материалы, под ред. Е. Я. Юдина, М., 1966.

  Г. А. Исакович, Г. Л. Осипов.

Акустический ветер

Акусти'ческий ве'тер, звуковой ветер, регулярные течения среды, образующиеся при распространении интенсивного звука . Например, при интенсивностях звука около 1 Мвт/м2 (100 вт/см2) скорость А. в. в воде может составлять десятки см/сек.

Акустический излучатель

Акусти'ческий излуча'тель, устройство для возбуждения звуковых волн в упругой среде (см. Звук ). А. и. могут строиться на различных механизмах звукообразования, например на колебаниях твёрдых тел и поверхностей в упругой среде (струна с декой, пластина, мембрана и др.), на возбуждении колебаний самого воздуха (свистки , сирены , органные трубы, голосовой аппарат человека и др.), на периодическом изменении температуры среды (термофон , ионофон) и т. д.

  Важнейшие характеристики А. и.: диапазон излучаемых частот, излучаемая мощность, направленность (распределение излучаемой энергии в пространстве). В зависимости от назначения А. и. требования к этим характеристикам различны, например громкоговоритель должен излучать звук в широком диапазоне частот от 30 гц до 16 кгц и равномерно по всем направлениям, а А. и. ультразвуковой дефектоскопии должны давать узконаправленный пучок ультразвуковых волн с одной частотой в несколько Мгц. Чтобы получить А. и. с требуемыми характеристиками, производят расчёт звукового поля, создаваемого этим А. и. Однако точные решения удаётся получить лишь для А. и. простейших форм (пульсирующий шар, колеблющийся шар и др.) при условии малой амплитуды колебаний излучающей поверхности, поэтому всё многообразие А. и. сводят к простейшим типам излучателей или их комбинациям.




Перейти на страницу:
Изменить размер шрифта: